128 research outputs found

    Quantum Theory of Superresolution for Two Incoherent Optical Point Sources

    Full text link
    Rayleigh's criterion for resolving two incoherent point sources has been the most influential measure of optical imaging resolution for over a century. In the context of statistical image processing, violation of the criterion is especially detrimental to the estimation of the separation between the sources, and modern farfield superresolution techniques rely on suppressing the emission of close sources to enhance the localization precision. Using quantum optics, quantum metrology, and statistical analysis, here we show that, even if two close incoherent sources emit simultaneously, measurements with linear optics and photon counting can estimate their separation from the far field almost as precisely as conventional methods do for isolated sources, rendering Rayleigh's criterion irrelevant to the problem. Our results demonstrate that superresolution can be achieved not only for fluorophores but also for stars.Comment: 18 pages, 11 figures. v1: First draft. v2: Improved the presentation and added a section on the issues of unknown centroid and misalignment. v3: published in Physical Review

    Comment on "Exposed-Key Weakness of Alpha-Eta" [Phys. Lett. A 370 (2007) 131]

    Full text link
    We show that the insecurity claim of the AlphaEta cryptosystem made by C. Ahn and K. Birnbaum in Phys. Lett. A 370 (2007) 131-135 under heterodyne attack is based on invalid extrapolations of Shannon's random cipher analysis and on an invalid statistical independence assumption. We show, both for standard ciphers and AlphaEta, that expressions of the kind given by Ahn and Birnbaum can at best be interpreted as security lower bounds.Comment: Published versio
    • …
    corecore